63 research outputs found

    Concussion Subtype Identification With the Rivermead Post-concussion Symptoms Questionnaire

    Get PDF
    Classifying concussion in key subtypes according to presenting symptomatology at an early post-injury stage is an emerging approach that may allow prediction of clinical trajectories and delivery of targeted treatments. The Rivermead Post-concussion Symptoms Questionnaire (RPQ) is a simple, freely available, and widely used tool for assessment of the presence and severity of various post-concussion symptoms. We aimed to probe the prevalence among athletes of symptom classes associated with identified concussion phenotypes using the RPQ at baseline and acutely after a concussion. Participants of organized sports aged 12–30 years were baseline-assessed with the expectation that some would experience a concussion during the study period. Concussed athletes were re-assessed within 2 weeks of their injuries. The RPQ was supplemented with three specific questions and reworded for baseline assessment. A binomial test was used to contrast the prevalence of an attribute in the concussed cohort against the probability established by the baseline observation. Three thousand and eighty-eight athletes were baseline-assessed and eighty-nine were re-assessed post-concussion. All concussed athletes endorsed having some elevated symptoms in the RPQ, and such endorsements were more prevalent than those among normal athletes. Moderate-to-severe post-concussion symptoms of specific classes tended to be endorsed with few additional symptoms of other classes of similar intensities. Elevated symptoms detected with the RPQ within as short as 2 weeks after a concussion may help delineate patients' clinical subtypes and guide their treatment. Further refinement of symptom questionnaires and use of objective measures will be needed to properly populate the concussion subtype classification

    Difference of high-light stress sensitivity in the two firs, Abies mariesii and Abies veitchii, in early spring

    Get PDF
    Abies veitchii and Abies mariesii are dominant species at the tree-line in Central Japan. Recently, we observed needle death, probably due to photodamage of the photosynthetic apparatus at the tree-limit during March-April. A. veitchii survives winter without any needle death due to photodamage at the tree-line. However, there is no conspicuous damage between the two species because this phenomenon is only observed at the tree-limit. In this study, we examined the difference in winter down-regulation of PS II between A. veitchii and A. mariesii and observed the following results: In March, (1) Fv/Fm of both species was about 0.1, showing the photochemical efficiency being severely inhibited. (2) The de-epoxidation state, expressed as [(A+Z)/(V+A+Z)], was about 0.35 for both species. (3) Chlorophyll (Chl) content of A. veitchii was much less than that of A. mariesii and Pchlide was found only in A. veitchii. In April, (1) Fv/Fm increased and [(A+Z)/(V+A+Z)] decreased for both species. (2) Chl content of A. veitchii increased by four-fold while Pchlide nearly dissappeared. These results indicate the following: During cold periods, most of Chl of A. veitchii may have been converted to Pchlide which is easily re-converted to Chl in spring, an intermediate of Chl biosynthesis. Winter conversion from Chl to Pchlide in A. veitchii may provide effective protection from photodamage of the photosynthetic apparatus. Furthermore, this may explain the higher ability of A. veitchii to prevent photodamage compared to A. mariesii

    Throughput Maximization by Adaptive Switching with Modulation Coding Scheme and Frequency Symbol Spreading

    Get PDF
    It is required to realize higher transmission rate and higher reliability for mobile communication due to the increase in Internet use. However, wireless channel capacity can not be used with maximum efficiency due to fluctuating channels affected by shadowing, multipath fading and mobility.Adaptive modulation and coding (AMC) scheme is now commonly implemented to maximize the throughput performance under the given link qualities. Forward Error Correction (FEC) based link adaptation is effective to improve throughput in a lower SNR regime, however, it immolates maximal throughput in good channel condition. Frequency symbol spreading (FSS) has been proposed that can improve BER even without FEC. It fully exploits the frequency diversity gain by spreading symbol per subcarrier to all frequency components. This paper proposes a new adaptation control scheme for OFDM by switching FSS and legacy AMC. Simulation result verifies its maximized throughput performance harvesting both of frequency diversity gain and coding gain

    Disrupted White Matter Microstructure of the Cerebellar Peduncles in Scholastic Athletes After Concussion

    Get PDF
    Concussion, or mild traumatic brain injury (mTBI), is a major public health concern, linked with persistent post-concussive syndrome, and chronic traumatic encephalopathy. At present, standard clinical imaging fails to reliably detect traumatic axonal injury associated with concussion and post-concussive symptoms. Diffusion tensor imaging (DTI) is an MR imaging technique that is sensitive to changes in white matter microstructure. Prior studies using DTI did not jointly investigate white matter microstructure in athletes, a population at high risk for concussive and subconcussive head traumas, with those in typical emergency room (ER) patients. In this study, we determine DTI scalar metrics in both ER patients and scholastic athletes who suffered concussions and compared them to those in age-matched healthy controls. In the early subacute post-concussion period, athletes demonstrated an elevated rate of regional decreases in axial diffusivity (AD) compared to controls. These regional decreases of AD were especially pronounced in the cerebellar peduncles, and were more frequent in athletes compared to the ER patient sample. The group differences may indicate differences in the mechanisms of the concussive impacts as well as possible compound effects of cumulative subconcussive impacts in athletes. The prevalence of white matter abnormality in cerebellar tracts lends credence to the hypothesis that post-concussive symptoms are caused by shearing of axons within an attention network mediated by the cerebellum, and warrant further study of the correlation between cerebellar DTI findings and clinical, neurocognitive, oculomotor, and vestibular outcomes in mTBI patients

    Throughput Maximization by Adaptive Switching with Modulation Coding Scheme and Frequency Symbol Spreading

    Get PDF
    It is required to realize higher transmission rate and higher reliability for mobile communication due to the increase in Internet use. However, wireless channel capacity can not be used with maximum efficiency due to fluctuating channels affected by shadowing, multipath fading and mobility.Adaptive modulation and coding (AMC) scheme is now commonly implemented to maximize the throughput performance under the given link qualities. Forward Error Correction (FEC) based link adaptation is effective to improve throughput in a lower SNR regime, however, it immolates maximal throughput in good channel condition. Frequency symbol spreading (FSS) has been proposed that can improve BER even without FEC. It fully exploits the frequency diversity gain by spreading symbol per subcarrier to all frequency components. This paper proposes a new adaptation control scheme for OFDM by switching FSS and legacy AMC. Simulation result verifies its maximized throughput performance harvesting both of frequency diversity gain and coding gain

    Visuo-Vestibular Information Processing by Unipolar Brush Cells in the Rabbit Flocculus

    Get PDF
    The unipolar brush cell (UBC) is a glutamatergic granular layer interneuron that is predominantly located in the vestibulocerebellum and parts of the vermis. In rat and rabbit, we previously found using juxtacellular labeling combined with spontaneous activity recording that cells with highly regular spontaneous activity belong to the UBC category. Making use of this signature, we recorded from floccular UBCs in both anesthetized and awake rabbits while delivering visuo-vestibular stimulation by using sigmoidal rotation of the whole animal. In the anesthetized rabbit, the activity of the presumed UBC units displayed a wide variety of modulation profiles that could be related to aspects of head velocity or acceleration. These modulation profiles could also be found in the awake rabbit where, in addition, they could also carry an eye position signal. Furthermore, units in the awake rabbit could demonstrate rather long response latencies of up to 0.5 s. We suggest that the UBCs recorded in this study mostly belong to the type I UBC category (calretinin-positive) and that they can play diverse roles in floccular visuo-vestibular information processing, such as transformation of velocity-related signals to acceleration-related signals

    Abnormal white matter blood-oxygen-level-dependent signals in chronic mild traumatic brain injury

    Get PDF
    Concussion, or mild traumatic brain injury (mTBI), can cause persistent behavioral symptoms and cognitive impairment, but it is unclear if this condition is associated with detectable structural or functional brain changes. At two sites, chronic mTBI human subjects with persistent post-concussive symptoms (three months to five years after injury) and age- and education-matched healthy human control subjects underwent extensive neuropsychological and visual tracking eye movement tests. At one site, patients and controls also performed the visual tracking tasks while blood-oxygen-level-dependent (BOLD) signals were measured with functional magnetic resonance imaging. Although neither neuropsychological nor visual tracking measures distinguished patients from controls at the level of individual subjects, abnormal BOLD signals were reliably detected in patients. The most consistent changes were localized in white matter regions: anterior internal capsule and superior longitudinal fasciculus. In contrast, BOLD signals were normal in cortical regions, such as the frontal eye field and intraparietal sulcus, that mediate oculomotor and attention functions necessary for visual tracking. The abnormal BOLD signals accurately differentiated chronic mTBI patients from healthy controls at the single-subject level, although they did not correlate with symptoms or neuropsychological performance. We conclude that subjects with persistent post-concussive symptoms can be identified years after their TBI using fMRI and an eye movement task despite showing normal structural MRI and DTI
    • …
    corecore